-
Previous
h/m CD36 shRNA Lentivirus
$595.00 – $1,195.00
-
Next
Human LCN2 shRNA Lentivirus
$595.00 – $1,195.00
h/m FASN shRNA Lentivirus
$595.00 – $1,195.00
Validated h/m FASN shRNA Lentivirus: High-titer shRNA lentiviral particles specific for human/mouse fatty acid synthase (FASN). The shRNA has been validated to meet or exceed 70% FASN knockdown efficiency using a specific fluorescence-based method that is more rapid and reliable than qPCR. The shRNA lentivirus is ultra-purified and concentrated to high-titer by PEG precipitation and sucrose gradient centrifugation, and ideal for transducing difficult-to-transfect cells including thawed and/or primary cells. Order a shRNA lentivirus set and receive lentivirus produced from mix of 2 independent shRNAs validated to knockdown the target gene (>70%) plus control lentivirus produced from mix of 2 scrambled shRNA constructs.
Have questions about this product? Need stable cell line instead? Send us a form and we’ll reply the same day: Contact Us
Available Options:
Specifications
Key Advantages:
- Same Cost For Custom Lentivirus – You can receive any combination of reporter (GFP/RFP/Luc/None) and selection marker (puromycin/blasticidin) for this product, without additional cost, by contacting us. To view our complete list of shRNA vectors, click here.
- Superior knockdown – LipExoGen Validated shRNA Lentiviruses are produced using the third generation system and feature novel, optimized shRNA vectors which express a 19-20 bp shRNA, fluorescent (GFP or RFP) or luminescent (luciferase) reporter, and drug-selection marker (puromycin or blasticidin). Taking advantage of a proprietary prediction algorithm developed in-house, validated shRNA constructs are capable of delivering 70% or more knockdown efficiency with less off-target effects compared to longer or mixed-sequence shRNA/siRNAs.
- Superior validation – All of our pre-made shRNA constructs are validated in-house using a specific fluorescence-based method that is more reliable than traditional qPCR. The validation process leverages bicistronic expression of the target mRNA and fluorescent reporter to confirm the efficacy of the shRNA. As knockdown validation can be readout using basic fluorescence microscopy, this low-cost, streamlined approach allows us to provide a superior-quality product at a price comparable or less than the average competitor.
- Superior accuracy – Polyclonal shRNA-transduced stable cells can be established within 10 days and used for downstream applications while preserving more properties of the parental cells. In this way, high-efficiency knockdown from our validated shRNA lentiviral particles can be advantageous over sgRNA CRISPR-Cas9 systems which select for single cell clones.
- Easily identify transduced cells – Validated shRNA constructs contain both fluorescent reporter and drug selection marker, allowing the flexibility to select transduced cells by puromycin/blasticidin or FACS sorting of GFP/RFP. Luciferase reporters are also available for detecting transduced cells in vitro or in vivo using luminescence-based techniques.
Product Data
Figure 1. Transduction efficiency for h/m FASN shRNA lentiviral particles HEK293FT cells (2×10^5) in a 24-well plate were transduced with 20 µl of h/m FASN-sh-RFP-BSD lentiviral particles for 48-72 hrs, followed by image acquisition by fluorescence microscopy.
Figure 2. Knockdown validation for h/m FASN-shRNA constructs. HEK293FT cells were co-transfected with cDNA encoding human FASN and plasmids for the indicated shRNAs (GFP, green). After 24-36 hours, fluorescent images of the living cells were acquired by fluorescence microscopy. GFP represents transfection of the shRNA construct, whereas Anti-FASN-Alexa-594 antibody staining is shown in red. Higher knockdown efficiencies may be possible in stably-transfected cells. Sr-sh, scrambled shRNA.
Figure 3. Knockdown validation for h/m FASN-shRNA constructs. Left. HEK293FT cells were co-transfected with human FASN-V5 expression vector along with Scrambled or h/m SERCA2 shRNAs. After 24-36 h, the cells were methanol fixed, stained for V5 tag (red), and fluorescence microscopy images were acquired. Right. HCT116 cells were transduced with the corresponding viruses to obtain the stable cell lines. Western blot shows the protein levels of FASN in the cells with scrambled shRNA or FASN shRNA.
Details
LSV-0012 | |
FASN | |
fatty acid synthase | |
NM_004104 | |
Human/mouse |
Recommended Control
Scrambled shRNA Control Lentivirus (mixture of two independent shRNAs), LSV-0024
Custom Orders
If you require a modification to one of our products (for example, change in reporter or other vector component), please request a custom order. We provide a variety of fast and efficient services for the production of high-quality, custom lentiviral particles on demand, usually for the same or comparable price as the listed item.
Or, send us your cells and we will establish a stable shRNA cell line for you using this product. Learn more.
I want to:
Additional Information
Additional Information
FASN | |
fatty acid synthase | |
n | NM_004104 |
Homo sapiens | |
Alias | Fatty Acid Synthase; Short Chain Dehydrogenase/Reductase Family 27X, Member 1; FAS; EC 2.3.1.85; EC 6.3.3.1; EC 2.3.1; SDR27X1; OA-519 |
Annotation Page | https://www.ncbi.nlm.nih.gov/gene/?term=NM_004104 |
Gene IDs | HGNC:HGNC:3594 Ensembl:ENSG00000169710 MIM:600212 |
Entrez Gene Summary | “The enzyme encoded by this gene is a multifunctional protein. Its main function is to catalyze the synthesis of palmitate from acetyl-CoA and malonyl-CoA, in the presence of NADPH, into long-chain saturated fatty acids. In some cancer cell lines, this protein has been found to be fused with estrogen receptor-alpha (ER-alpha), in which the N-terminus of FAS is fused in-frame with the C-terminus of ER-alpha. [provided by RefSeq, Jul 2008]“ |